Verification of NMME Extreme Seasonal Temperatures

Dan C. Collins
NOAA Climate Prediction Center

DATA

- NMME hindcast:
 - 12 x 1-month lead seasonal hindcasts
 (e.g., November 1st initialization predictions of DJF Temperature)
 - 29 year hindcasts, 1982 to 2010
- GHCN+CAMS 2-m temperature observations
- Considering the skill and calibration of probability forecasts for bottom and top deciles (i.e. 10th and 90th percentile forecasts)
- ... and calibration of ensemble probabilities for above and below normal terciles simultaneously

METHODS

- Count: Probabilities based on percent count of ensemble members
 - Model climatological mean removed
 - Variance of members corrected
 - Terciles (+- 0.43 standard deviations) and deciles (+- 1.28 standard deviations) derived from normal distribution fit to hindcasts
 - Cross-validated (Leave 1-year out) calculation of model mean and standard deviations
- 2. Ensemble Regression or EReg probability calibration methodology (Unger et al 2009).
 - Removes systematic bias and calibrates probability based on hindcast correlation
 - Cross-validated regression (Leave 1-year out) calculation of all regression parameters and probabilities
 - Fit Gaussian distribution around each ensemble member

Multi-model ensemble count forecasts

Ensemble Regression

1) Derive a regression equation for the least-squared error solution between the ensemble members and the observation, based on the ensemble mean and observations.

$$F^*_{(m)} = aF_{(m)} + b$$

 Expected residual error distribution of each member based on expected MSE of ensemble mean minus average ensemble spread.

$$\sigma_{\varepsilon}^{2} = [MSE] = \sigma_{ens}^{2} + \varepsilon^{2}$$

$$[MSE] = \sigma_{obs}^{2} (1 - R_{m}^{2})$$

$$\varepsilon^{2} = \sigma_{\varepsilon}^{2} - \sigma_{ens}^{2}$$

Multi-model ensemble **EReg** calibrated forecasts

Seasonal Forecasting of Extremes & MME

- Low predictability & extremes due to signal+noise
- Some individual models have 10 ensemble members ->
 - Poor resolution of tails of distribution (extremes)
- Probabilistic Outlooks for categorical forecasts
 - 3-category tercile forecasts (Above and Below normal)
 - Probability of extremes should be consistent with tercile forecasts
- Correlation used to adjust spread of model
 - Realistic probabilities representing hindcast skill
 - Improves reliability, while maintaining resolution of events
 - Brier Skill Score as metric (Resolution + Reliability)
- Multi-Model Ensembles
 - Many ensemble members reducing noise and canceling errors
 - Better resolution of probability distribution, including tails (i.e. extremes)

Variations in the mean and spread of ensemble members: Probability of extremes < -1.28 sigma, or > +1.28 sigma

Cross-validated DJF Correlation

Cross-validated JJA Correlation

Each individual model's PDF is calibrated to improve reliability (DJF Terciles shown)

Combined NMME Count & EReg Tercile Probability Reliability

- Calibration improvesDJF & MAMreliability
- Combined EReg NMME JJA & SON probabilities underconfident
- Probabilities of combined NMME somewhat reliable.
 Combining calibrated models -> under-confident total probability

Combined NMME Count & EReg Tercile Probability Reliability

- Calibration improvesDJF & MAMreliability
- Combined EReg NMME JJA & SON probabilities underconfident
- Probabilities of combined NMME somewhat reliable. Combining calibrated models -> under-confident total probability

Combined NMME Count & EReg Extreme Probability Reliability

- Calibration of PDF produces underconfident forecasts in DJF & MAM
- Better reliability in some seasons

Combined NMME Count & EReg Extreme Probability Reliability

- Calibration of PDF produces underconfident forecasts in DJF & MAM
- Better reliability in some seasons

Combined NMME Count & EReg Extreme Probability Reliability

- Calibration of PDF produces underconfident forecasts in DJF & MAM
- Better reliability in some seasons

Four seasons 10th (top) and 90th (2nd row) percentile **count** hindcast Brier Skill Scores compared to below and above normal tercile BSS

Four seasons 10th (top) and 90th (2nd row) percentile **EReg** hindcast Brier Skill Scores compared to below and above normal tercile BSS

North America average Brier Skill Scores

DJF climatological 10th (blue) and 90th (red) percentile hindcasts 8 models and the combined NMME, bias corrected **Count** (bright) & Ensemble Regression or **Ereg** calibrated (darker colors)

North America average Brier Skill Scores

DJF climatological 10th (blue) and 90th (red) percentile hindcasts 8 models and the combined NMME, bias corrected **Count** (bright) & Ensemble Regression or **Ereg** calibrated (darker colors)

North America average Brier Skill Scores

DJF climatological 10th (blue) and 90th (red) percentile hindcasts 8 models and the combined NMME, bias corrected **Count** (bright) & Ensemble Regression or **Ereg** calibrated (darker colors)

North America average Brier Skill Scores All 12 seasons 10th (blue) and 90th (red) percentile hindcasts *Combined NMME (far right)

North America average Brier Skill Scores All 12 seasons 10th (blue) and 90th (red) percentile hindcasts *Combined NMME (far right)

Combined NMME has positive skill in all seasons.

Not always the greatest skill, but consistently near the best model

Results & Conclusions

- Skill of tercile probabilities of seasonal forecasts implies skill of extremes
 - Skill in extreme forecasts in same regions as tercile forecasts
- Patterns of skill of 10th and 90th percentile forecasts similar; Differences appear related to decadal trends
- While individual ensemble models often have negative skill when forecasting extremes, on average over North America, the combined NMME is found to have skill when forecasting extremes in all seasons
- Regression calibration successfully removes areas of negative skill; however, combined NMME forecasts are sometimes under-confident

Thanks